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The occurrence of secondary flow in curved ducts due to the centrifugal forces can 
often significantly influence the flow rate. In the present work, the secondary flow of 
an incompressible viscous fluid in a curved duct is studied by using a finite-volume 
method. It is shown that as the Dean number is increased the secondary flow 
structure evolves into a double vortex pair for low-aspect-ratio ducts and roIl cells 
for ducts of high aspect ratio. A stability diagram is obtained in the domain of 
curvature ratio and Reynolds number. It is found that for ducts of high curvature 
the onset of transition from single vortex pair to double vortex pair or roll cells 
depends on the Dean number and the curvature ratio, while for ducts of small 
curvature the onset can be characterized by the Dean number alone. A comparison 
with the available theoretical and experimental results indicates good agreement. A 
correlation for the friction factor as a function of the Dean number and aspect ratio 
is developed and is found to be in good agreement with the available experimental 
and computational results for a wide range of parameters. 

1. Introduction 
The study of viscous flow in curved (or helically coiled) ducts is of fundamental 

interest in fluid mechanics. There are numerous applications, which include the flows 
through turbomachinery blade passages, aircraft intakes, diffusers, and heat 
exchangers. Some of these problems of practical interest involve strong secondary 
flows due to longitudinal curvature in the geometry. The presence of longitudinal 
curvature generates centrifugal forces which act a t  right angles to the main flow and 
produce a secondary flow. This causes a reduction in flow rate due to a decrease in 
the average axial velocity. In addition, the axial velocity profile is distorted (from 
the quasi-parabolic structure which is characteristic of pressure-driven flows in 
straight ducts) with an outward shift of the peak axial velocity. 

The existing works on laminar flows in curved pipes can be essentially separated 
into analytical, experimental and computational studies dealing with developing and 
fully developed flows in circular and non-circular tubes. The earliest studies on 
curved pipes to predict the onset of secondary flows and its characteristics were by 
Dean (1927, 1928). His studies showed that the centrifugal effects introduced by the 
curvature of the pipe cause a pair of counter-rotating vortices to evolve. Since then 
several analytical, computational and experimental studies have considered different 
aspects of this important process in detail. The present study considers a subset of 
this physical process, namely, the fully developed laminar flow of an incompressible 
viscous fluid in curved rectangular ducts driven by a fixed axial pressure gradient 
under steady conditions. 
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Fully developed viscous flows in curved ducts have been shown to depend on the 
curvature ratio and the Dean number (defined in (3.4)). Past work on fully developed 
flow in curved square ducts includes numerical studies by Mori, Uchida & Ukon 
(1971) who obtained a numerical solution by using the boundary-layer approxi- 
mation (valid for large Dean numbers); Cheng, Lin & Ou (1976), Ghia & Sokhey 
(1977), and Joseph, Smith & Adler (1975) who obtained solutions which predicted the 
existence of a weak second vortex pair near the outer wall above a certain value of 
the Dean number. This second vortex pair was found to rotate in the opposite 
manner to the primary vortex pair. Cheng et al. (1976) predicted the onset of the 
second vortex pair to occur above a Dean number of 150, Ghia & Sokhey predicted 
it to occur above a Dean number of 143, while the calculations of Joseph et al. give 
a threshold Dean number of 152. (Here, and elsewhere in this work, to avoid 
confusion stemming from the definitions of Dean number employed by different 
authors, all published values have been converted using the definition in (3.4)). 
However, since the curvature ratio (whose effect is embedded in the Dean number) 
may itself play an important role for highly curved ducts, the suitability of the Dean 
number as the sole parameter to  characterize the onset of the second vortex pair is 
unclear. 

Experiments on the flow in curved square ducts have been performed by Baylis 
(1971), Mori et al. (1971), Humphrey, Taylor & Whitelaw (1977), and Hille, 
Verenkamp & Schulz-Dubois (1985). Baylis (1971) obtained the friction factors for 
the range of Dean numbers 500 < De < 70000 and the curvature ratio 1.75 < C < 17.5 
and gave an empirical correlation for the friction factor in terms of the Dean number. 
Mori et al. (1971) measured axial velocity profiles a t  the midplane of the cross-section 
for 28 < De < 2517 a t  C = 14 and Humphrey et al. (1977) used laser-Doppler 
anemometry for developing flow at  a Dean number of 368 and the curvature ratio of 
4.6. Hille et al. (1985) also used laser-Doppler anemometry, for C = 6.45, and gave a 
detailed description of the structure of the secondary flow. They were also able to 
predict the onset of the second vortex pair in the range 150 < De < 300. Kelleher, 
Flentie & McKee (1980) performed experiments in a high-aspect-ratio duct ( = 40) 
using hot-wire anemometry and flow visualization techniques. They observed the 
multicellular flow a t  the Dean numbers of 214.7, 257.3, and 307.7 for a curvature 
ratio of 24.3. They also found that the cell aspect ratio, which is the average ratio of 
cell height to  width, is approximately 0.81 for all three values of the Dean number. 

For curved rectangular ducts Cheng et al. (1976) performed calculations for duct 
aspect ratios (defined as the ratio of height H to width B) of 0.5 ,2 ,  and 5 for the range 
of the Dean number 15.9 to 312.7 a t  curvature ratios of 100 and 30. They reported 
that, for an aspect ratio of 0.5, at De = 176 there were no additional vortices and at 
De = 200 there was a pair of very weak vortices close to the outer wall. In  addition, 
they found that for an aspect ratio of 5 ,  a pair of secondary vortices appeared a t  a 
rather low Dean number of 76 and the eye of the primary vortex moved toward the 
upper and lower walls with the increase of the Dean number. They gave correlations 
for the friction factor in terms of the Reynolds number and the aspect ratio. 

A study by Winters (1987) considers the bifurcation of secondary flow solutions for 
fully developed laminar flow in curved rectangular ducts. The study is based on 
finite-element analysis and shows the existence of multiple solutions arising from the 
nonlinear equations for the range of aspect ratio from 0.8 to 1.6. A recent work by 
Ravi Sankar, Nandakumar & Masliyah (1988) considers the related problems of 
developing flow in curved ducts. They have shown that for a range of curvature 
ratios and Dean numbers the flows develop into previously known two- and four-cell 
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patterns based on fully three-dimensional calculations using the parabolized form 
of the Navier-Stokes equations. They have also shown that for loosely coiled ducts 
(of curvature ratio of 100) outside a narrow range of Dean number the solution 
exhibits sustained oscillations in the axial direction and that no stable steady 
solutions could be predicted. This interesting aspect of the evolution of secondary 
flow in curved ducts requires further investigation and is not considered in detail in 
the present work. However, a brief discussion on the stability of secondary flows in 
square ducts of moderate to strong curvature based on some preliminary 
computations is given in $3. 

Since the longitudinal curvature plays a role similar to  that of spanwise rotation, 
a brief review of some recent work on pressure-driven laminar flow in rectangular 
ducts subject to spanwise rotation will be considered here. It should be noted that 
in the case of ducts subjected to spanwise rotation, the Rossby number Ro (defined 
by Ro = W/(2QB), where Q is an angular velocity of the spanwise rotation and B is 
the width of the channel) plays a role similar to the curvature ratio. A numerical 
study by Speziale (1982) used a stream function-vorticity formulation based on 
Arakawa’s method to analyse viscous flow for aspect ratios of 2 and 8 in the 
Reynolds-number range of 0 to 500, and Rossby-number range of 0.1 to 100. His 
results show that the secondary flow for high rotation number has a double-vortex- 
pair structure which is similar to  the results of Cheng et al. (1976) for high-Dean- 
number flow in curved ducts. Kheshgi & Scriven (1985) solved the problem of 
pressure-driven flow in a rotating square channel with a finite-element method, and 
obtained the double-vortex-pair structure along with detailed stability boundaries. 
They also observed that the two-vortex family of solutions changes to four-vortex 
solution at  an imperfect bifurcation. Speziale & Thangam (1983) considered the roll- 
cell instabilities for a duct of aspect ratio 8 in the Reynolds-number range of 0 to 500, 
and Rossby-number range of 0.0001 to 3, by using the stream function-vorticity 
formulation based on Arakawa’s scheme. They characterized the onset and evolution 
of the roll-cell structure from the two-vortex configuration which occurs at weak- 
rotation rates. In  the present study certain additional features of similarity between 
pressure-driven laminar flows in curved ducts and in ducts subject to  spanwise 
rotation will be discussed. 

The primary focus of the present work will be on the onset and evolution of 
secondary motion in the fully developed laminar flow of incompressible viscous fluids 
in curved rectangular ducts driven by a fixed axial pressure gradient a t  steady 
conditions. The motivation for the present study arose from the fact that  (i) there 
exists no detailed study of the flow in curved rectangular ducts of high aspect ratio ; 
(ii) the transition in secondary flow structure due to  curvature effects has not been 
fully analysed in the range of parameters of engineering importance ; (iii) there are 
no generalized friction-factor (or flow reduction) correlations. A finite-volume 
algorithm suitable for handling cylindrical geometry is used to analyse laminar flows 
in curved ducts for a wide range of aspect ratios. Next, the governing equations and 
the numerical procedure will be described, and this will be followed by a discussion 
of the results and the conclusions. 

2. Formulation and the method of solution 
The problem to be considered is that of fully developed motion of an incompressible 

viscous fluid in curved ducts of rectangular cross-section. It should be noted that the 
flow in helically coiled ducts may be also considered as a flow in curved ducts so long 



424 S. Thangam and N .  Hur 

as the ratio of torsion to  curvature of a helical duct remains small. With reference to  
figure 1, the pitch is shown to be 2nL, and the curvature 5 and the torsion t; are 
defined as [ = R / ( L 2 + R 2 )  and 6 = L / ( L 2 + R 2 ) ,  where R is the radius of helical coil, 
which can be approximated as the radius of curvature when L / R  is very small. Kao 
(1987) studied the torsion effect on fully developed flow in helical pipe and found that 
if the ratio EJc is of order unity, the presence of torsion can produce a large effect on 
the flow pattern, but has negligible effect on flow resistance (see also Manlapaz & 
Churchill 1980). 

The flow is steady and primarily generated by a fixed axial pressure gradient. The 
duct is sufficiently long compared to  its base length B and height H so that  there 
exists a central section of the duct where the end effects are negligible and the flow 
properties are independent of the axial coordinate $. In  the limit of infinite curvature 
ratio C = RID, where D, is the hydraulic diameter, the flow field corresponds to that 
in straight ducts of rectangular cross-section and the velocity profile is unidirectional 
and quasi-parabolic. However, for finite curvature ratios, the fully developed 
velocity field is three-dimensional, i.e. the velocity vector v in a cylindrical 
coordinate system is of the form 

0 = M T ,  4, w(r, x ) ,  w(r, 41, ( 2 . 1 )  

where u, v and w denote radial, vertical, and axial velocity, respectively. Here, the 
u- and v-components of velocity constitute the secondary flow. For the case of 
laminar motion, the three velocity components and the pressure P are the solutions 
of the equations for the conservation of mass and momentum : 

U 
u,+w,+- = 0, 

r 

w2 1 1 

r P 
uu,+vu,-- = --P,+v 

uv,+vv, = --P,+v v,,+-v,+w,, , 
P l c :  1 

where p is the density of the fluid, v is the kinematic viscosity, and the subscripts 
denote partial differentiation. 

The set of equations (2.2) are solved numerically under steady conditions. In this 
study a finite-volume method is used and the primitive variables (velocities and 
pressure) are solved for directly. It should be noted that in the finite-volume scheme, 
the formulation assures the conservation of mass (Patankar 1980). The algorithms 
used in the present study is a modification of that proposed by Patanakar (1980) to  
increase its rate of convergence by extracting information of the pressure field from 
a given velocity field (Hur 1988). 

The computational technique is based on semi-implicit line relaxation of a system 
of algebraic difference equations obtained by expressing the governing equations 
over a staggered mesh system. For this purpose, the computational domain is 
discretized into M x N finite-volume cells. At the centroid of each cell the variables 
such as the pressure and the axial velocity are defined, whereas the velocities u and 
v are defined a t  the horizontal and vertical cell walls, respectively. The details of the 
difference equation and the algorithms may be found in Hur (1988). 
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FIGURE 1 .  Physical configuration and coordinate system of helically coiled duct. 

The boundary conditions for the velocities u, v, and w are based on ‘no-slip’ at the 
walls. Unlike the stream-function formulation of equations, the primitive-variable 
formulation discussed herein requires the specification of pressure on the boundary. 
In  the staggered mesh algorithm used in this work, the control volumes on the 
boundary are located such that one of its sides coincides with the bouridary. Since the 
normal velocity on the boundary is known (in this case based on the ‘no-slip’ 
condition) the pressure at the centroid can be obtained from the conservation of 
mass. Descriptions of the numerical implementation of the boundary conditions for 
finite-volume schemes can be found in, for example, Roache (1972), Patankar (1980), 
Hur (1988). 

The computations reported in this study were carried out using a 32 x 32 mesh for 
square ducts, a 32 x 64 mesh for 1 x 2 rectangular ducts, a 32 x 128 mesh for 1 x 4 
rectangular ducts and a 16 x 128 and 32 x 256 mesh for 1 x 8 rectangular ducts. This 
mesh scheme was selected based on a detailed study of the adequate resolution of the 
primitive variables for the range of parameters considered. Typically, the 
computations were started for a selected aspect ratio and Reynolds number using the 
results from the straight-duct flow (i.e. the quasi-parabolic profile) as the initial 
solution. The calculations were performed iteratively using a semi-implicit line- 
relaxation procedure, and the solution was assumed to be converged in a numerical 
sense if the average relative error in each of the primitive variables (i.e. velocity 
components and the pressure) is less than lop5 (0.001%) between successive 
iterations. The curvature ratio was then increased in small steps with the converged 
solutions from the previous curvature ratio acting as the initial solution for the 
computations. The calculations were then repeated for different aspects ratios and 
Reynolds numbers, In order to improve the speed of convergence to  steady solutions 
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for ducts of moderate to high curvature ratio (tightly coiled ducts), the computations 
were performed using an implicit time-marching method starting from an initial 
state consisting of converged solutions from an adjacent parameter set. In addition, 
the procedure was used to verify that the solutions obtained were not dependent 
upon the initial conditions. 

3. Results and discussion 
To facilitate the discussion of the results, the governing equations are first put into 

dimensionless form. The bulk mean axial velocity of the fluid in a straight duct, Wo, 
corresponding to a specified pressure gradient is used as the velocity scale, and the 
hydraulic diameter, D, is used as the lengthscale. The scaled variables are 

It should be noted that D, = 0.5H/(A + l ) ,  where A = H / B  is the aspect ratio of the 
duct. The dimensionless governing equations based on these variables are given by 
(after omitting for convenience) 

1 
- ( ru) ,  + v, = 0, 
r 

I 1 W2 

r 
-(ru2),+(uv),  = -P,+-, 

(3.2) 

Re, " r :I : u: J 1 
-(ruw),+(vw),  = ~ -(rw,),+w,,-- --P 
r 

Here, the coordinate-variable subscripts ( r ,  z ,  q5) denote partial differentiation, and 
Re, is the Reynolds number based on the bulk mean velocity in a straight duct, i.e. 

&ID, 

V 
Re, = -. (3.3) 

In order to evaluate the volumetric flow reduction due to the presence of the 
curvature, it is convenient to define a modified Reynolds number based on the bulk 
mean velocity of fully developed flow in curved ducts. The curvature ratio will be 
defined as the ratio of the radius of curvature of a duct to the hydraulic diameter. 
Because we have used the hydraulic diameter as a lengthscale for the radial 
coordinate r ,  the curvature ratio does not appear in the equations explicitly. The 
curvature ratio, however, is a necessary parameter for the analysis of flow in curved 
ducts. The Dean number can then be defined based on the modified Reynolds 
number, Re, and the curvature ratio, C :  

(3.4) 
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(6) (ii) 

I 0 

FIGURE 2. (i) Secondary flow streamlines and (ii) axial velocity contours in a curved square duct 
for C = 2.5, illustrating the transition from a single vortex to double vortex pair (I and 0 represent 
the inner and outer sidewalls, respectively, here and in subsequent figures.) (a) Re = 126 (De = 80), 
( b )  Re = 284 (De = 179). 

It should be noted that by definition (and to conform with existing literature on 
curved ducts), small curvature ratio represents ducts of high curvature (i.e. tightly 
coiled), and large curvature ratio represents ducts of low curvature (i.e. loosely 
coiled). 

The system of equations (3.2) was discretized based on a finite-volume scheme and 
solved for steady-state conditions by using a semi-implicit procedure as discussed in 
$2. The results for laminar incompressible flow of viscous fluids in curved ducts of 
aspect ratio 1 , 2 , 4 ,  and 8 were obtained for a range of Dean numbers and curvature 
ratios of interest, and are shown in figures 2-13. 

In figure 2, the streamlines and axial-velocity contours are shown for a square duct 
of curvature ratio 2.5 at two different Reynolds numbers. As can be seen from figure 
2(a) ,  for Re = 126 (De = 80) two counter-rotating vortices are present (with the 
upper vortex in counterclockwise and the lower one in clockwise motion). The point 
where the maximum of the axial velocity occurs is shifted towards the outer wall 
owing to the centrifugal force. In  these and in the following figures, the symbols I and 
0 represent the inner and outer sidewalls, respectively. 

When the Reynolds numbers is increased to 284 (De = 179), a pair of additional 
vortices appears which rotates in the opposite sense to the main vortices (figure 2b). 
The imbalance between the pressure gradient and the centrifugal force causes the 
transition from the single-vortex-pair to the double-vortex-pair structure. This 
causes the location of the maximum axial velocity to move near the outer wall in 
symmetrical positions above and below the radial centreline. In  the region near the 
centre of the outer wall, the pressure gradient across the duct in the radial direction 
is positive but the centrifugal force decreases from a maximum value to zero a t  the 
outer wall. 

It should be noted here that the Dean number a t  which this transition occurs has 
been predicted by Joseph et al. (1974, Cheng et al. (1976), and Ghia & Sokhey (1977) 
as 152, 150 and 143, respectively. The discrepancies are because the transition is not 
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FIGURE 3. Stability diagram in Dean number - curvature ratio plane for a square duct. (The region 
below the curve represents a single vortex pair while the region above the curve represents a 
double-vortex-pair secondary flow .) 

a function of the Dean number alone for small curvature ratios (that is, for the case 
of highly curved ducts). To illustrate this, a stability diagram in the Dean 
number-curvature ratio plane has been developed through a regression analysis of 
the available data and shown in figure 3. I n  this diagram, the region below the 
stability (or transition) curve represents single-vortex-pair secondary flow structure, 
while the region above the curve corresponds to the double-vortex-pair structure. As 
can be seen, when the curvature ratio of the duct increases (i.e. for decreasing 
curvature) the onset of instability (or transition) becomes essentially independent of 
the curvature ratio. On the other hand, for small values of curvature ratio (i.e. for 
ducts of high curvature) the onset of instability is a strong function of the curvature 
ratio and the Dean number. 

In  figure 4 the secondary flow intensity (defined as the ratio of the maximum 
secondary flow velocity to  the bulk mean axial velocity) is shown as a function of the 
Dean number for various curvature ratios. As can be seen, the secondary flow 
intensity varies weakly with the Dean number except near the onset of transition 
from the single- to double-vortex-pair mode, a t  which point there is a sudden 
decrease in the intensity. This decrease in the secondary flow intensity is attributed 
to  the fact that  when the flow evolves from a single vortex pair to  a counter-rotating 
double-vortex-pair structure, the maximum secondary flow velocity is reduced. On 
the other hand, it is seen to be a strong function of the curvature ratio, since the 
secondary flow is induced by the centrifugal force whose strength is considerably 
affected by the axial flow velocity. 

A point that  should be taken into account concerns the stability of the four-vortex 
secondary flow. Winters (1987) obtained a set of stable and unstable solutions based 
on a finite-element method for the fully developed flow field in a curved square duct 
and indicated clearly that the four-vortex symmetric flow can become unstable for 
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FIGURE 4. Secondary flow intensity as a function of Dean number for square ducts 
of different curvature ratios. 

certain parameter values. Most of the analysis reported by him dealt with loosely 
coiled ducts with curvature ratios x 50, wherein the secondary flows are quite weak. 
A recent work by Ravi Sanker et al. (1988) considers the time-dependence of the 
developing flow field in curved square ducts based on the parabolized Navier-Stokes 
equations. They point out that for loosely coiled ducts there is a range of Dean 
number for which the flow is characterized by stable solutions and outside this range 
the solutions can become oscillatory for asymmetric perturbations. Their results also 
indicate that for tightly coiled ducts both the stable four-vortex and the stable two- 
vortex solutions exist, and that the four-vortex solution can become unsteady for 
certain parametric ranges when finite asymmetric perturbations are imposed. 

It should be noted that while such detailed analysis were not performed in the 
present work a series of computations was carried out for a selected set of parameters 
for square ducts of moderate to strong curvature by solving the time-dependent 
Navier-Stokes equations. For these computations the four-vortex secondary flow 
field was first obtained by solving the steady form of the Navier-Stokes equations a t  
suitably selected values of the Dean number and curvature ratio (in the range of 
250 < De < 525 and 3 < C < 10). The four-vortex secondary flow was then perturbed 
and the resulting flow field was used as the initial condition for the time-dependent 
computations. Two types of perturbations were used : in the first, the four-vortex 
secondary flow was disturbed in a random manner with the maximum amplitude of 
the disturbances a t  100 % of the average amplitude of the undisturbed flow, and the 
corresponding axial velocity was disturbed in a random manner with the maximum 
amplitude maintained at 10 YO of the average amplitude of the undisturbed flow ; in 
the second type, the axial velocity alone was selectively perturbed a t  10% of the 
average amplitude of the undisturbed flow in the upper half of the cross-section. In 
both cases, the computations were carried out for a large number of time steps using 
an explicit time-dependent full-mode finite-difference procedure (Roache 1972) and 
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FIGURE 5.  Variation of friction factor with Dean number for a square duct, - a comparison of 
present results with available experimental and computational findings. 

. I  

FIGURE 6(a,b) .  For caption see facing page. 

it was found that the flow field relaxes back to  the four-vortex structure obtained 
from the steady computations. While these do not offer validation that the four- 
vortex solution is always stable, i t  is felt that  the magnitude of perturbation required 
to destabilize the flow needs to be much larger. A careful and thorough large- 
amplitude bifurcation study is required to provide physical insight into this 
interesting phenomenon. 
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I 

FIGURE 6. Effect of aspect ratio on (i) secondary flow streamlines and (ii) axial flow velocity for 
C = 20. (a )  A = 1 ,  Re = 798, De = 178; ( b )  A = 2, Re = 919, De = 205; (c) A = 4, Re = 1024, 
De = 229; ( d )  A = 8 ,  Re = 556, De = 124. 

FIGURE 7 .  ( i )  Secondary flow streamlines and (ii) axial velocity contours in a curved duct for A = 2 
and C = 5 illustrating the transition from a single vortex to a double vortex pair. (a)  Re = 434 
(De = 194), (b)  Re = 562 (De = 251). 



432 S. Thangam and N .  Hur 

FIGURE 8. (i) Secondary flow streamlines and (ii) axial velocity contours in a curved duct for A = 
4 and G = 5 illustrating the transition from a single vortex to a double vortex pair. (a) Re = 312 
(De = 140), (b)  Re = 487 (De = 218). 

Perhaps the most important result for engineering applications is the estimation 
of the friction factor (or flow-rate reduction) for the curved ducts. This is especially 
important when considering the fact that, unlike in straight ducts, the flow rate for 
the given pressure drop in curved ducts is not known a priori. In figure 5 computed 
values of the friction-factor ratio, fJf, (defined as the ratio of the bulk mean axial 
velocity of the straight duct to that of the curved duct corresponding to a given 
pressure drop) for a square duct is shown as a function of the Dean number. The 
monotonic increase in the friction factor with Dean number shows that an increase 
in either the axial velocity or curvature causes an increase in the intensity of 
secondary flow leading to a decrease in flow rate. As can be seen, excellent agreement 
with earlier experimental and numerical results is present. It should be noted that 
the friction-factor ratio may be a150 expressed as 

The effect of aspect ratio on the flow field is analysed next. In the figure 6(a-d) ,  
the secondary flow structure is shown for aspect ratios of 1,  2 , 4  and 8 a t  a curvature 
ratio of 20. It can be seen that, when the aspect ratio is increased, the secondary flow 
field changes from the double-vortex-pair structure to the roll-cell pattern. To 
illustrate the onset of instability in ducts of aspect ratio other than one, the flow 
patterns before and after the instability are shown in figures 7 and 8 for A = 2 and 
4, respectively. It can be seen here that when A = 4 the second vortex pair at  the 
onset of instability spans nearly the entire width of the channel. 

I n  figure 9 (a,  b ) ,  the flow pattern during the evolution of the instability is shown 
for an aspect ratio of 8. At low Dean numbers of 22 and 86, only a pair of vortices 
near the upper and lower walls has been observed. At De = 107, two additional weak 
vortices appear in the centreplane near the outer wall as in the case of the square 
duct. When the Dean number is further increased to 120, the entire duct is filled with 
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roll cells. This secondary flow pattern is marked by the presence of four pairs of 
counter-rotating vortices, which has not been predicted in earlier computational 
works. In this case, an average cell aspect ratio (=  HJB, where H, is the average size 
of the vortex cells neglecting the ones near the top and bottom walls) has been found 
to be 0.80. This is in good agreement with the experiment of Kelleher et al. (1980) 
where a cell aspect ratio of 0.81 was obtained for the cases of A = 40, C = 24.3, at 
De = 214.7, 257.3, and 307.7. 

It is interesting to note here that the points of local maxima and minima in axial 
velocity are associated with the boundaries of the two counter-rotating vortices of 
the secondary flow. This is because at  the local maximum or minimum of the axial 
velocity, the centrifugal force is also at  its local maximum or minimum, respectively, 
and this leads to the formation of the pairs of counter-rotating vortices. These results 
have striking similarity to the flow pattern observed in ducts of high aspect ratio 
which are subject to spanwise rotation (e.g. Speziale & Thangam 1983). This is 
because the contribution to the body force due to centrifugal effects in curved ducts 
and that from the Coriolis effects in rotating ducts are quite similar (for details, see 
the Appendix), 

The roll-cell instabilities in rotating ducts have been analysed by earlier 
researchers. Hart (197 1 )  and Lezius & Johnston (1976) obtained the stability 
boundary based on a linear stability analysis for rotating channel flow, while Speziale 
& Thangam (1983) obtained this stability boundary by numerically solving the 
entire nonlinear equations of motion for a rotating duct of aspect ratio 8. Hart (197 1)  
and Lezius & Johnston (1976) also conducted experiments in channels of finite aspect 
ratio, and verified their computational findings. In  order to compare the stability of 
the flow in curved ducts with that in a rotating duct, the width of the channel is 
selected as the lengthscale to be consistent with the works of earlier researchers. 
Based on the width as the lengthscale the curvature ratio C,, the Reynolds number 
Re,, and the Dean number De, are defined as 

R VB C - -, Re, = -, De, = Re,(C,)-o.5. 
, -B  V 

These parameters are used in the stability diagram, figure 10 (wherein the curves 
are obtained by a regression analysis), to show the effects of aspect ratio and 
curvature ratio. As the aspect ratio increases, the Reynolds number at  which the 
instability occurs decreases; i.e. the onset of instability occurs at a much lower 
Reynolds number. It is also seen that for the range of aspect ratios considered, the 
effect of an increase of curvature ratio is to cause the onset of instability at  lower 
Reynolds numbers. This is due to  the increase in the centrifugal force associated with 
the curvature of the duct. 

In figure 11 a comparison of the stability boundary of the flow field in high-aspect- 
ratio ducts with curvature, and that in ducts subjected to spanwise rotation is 
shown. As can be seen, the stability boundaries predicted by Hart (1971), Lezius & 
Johnston (1976) and Speziale & Thangam (1983) agree quite well with those obtained 
in the present study. For the purposes of this comparison, the inverse of the 
curvature ratio of ducts is considered to be equivalent to the rotation number for 
ducts subject to spanwise rotation (see the Appendix for a discussion). As a further 
consequence of the above analysis, it should be noted that, similar to the findings for 
rotating channel flow, for curved ducts of aspect ratio greater than 8 the flow can be 
treated like flow in a curved channel from the stability point of view. In the present 
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De = 22 

- 
192 
86 

FIGURE 9(a). For caption see facing page. 

study, this was independently confirmed by performing computations for ducts of 
curvature ratio 12 and 16. 

In addition,it should be noted (from figures 10 and 11) that the slope of the 
stability boundary is nearly a constant for high curvature ratios (i.e. for ducts of 
small curvature). This slope is found to be -0.5, or 

Re,(C,)-0.5 = De, = constant, (3.7) 

which confirms the assertion that the transition from a single vortex pair to either 
a double vortex pair of roll cells is a function of the Dean number alone for ducts of 
small curvature (or high curvature ratio). 

The computed results for the friction-factor ratio, covering a wide range of aspect 
ratio and Dean number, are given in figure 12. Here, the Dean number is defined 
based on the hydraulic diameter since this is the lengthscale suitable for determining 
the friction-factor ratio (or volumetric flow reduction), As can be seen from the figure 
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FIGURE 9. Evolution of roll-cell instability in a rectangular duct with A = 8 and C = 5 .  
(a) Secondary flow streamlines, ( b )  axial velocity contours. 

the friction-factor ratio increases with the Dean number and aspect ratio. Excellent 
agreement with earlier results is evident from the figure. From an engineering 
application point of view, there have been efforts to obtain correlations between the 
friction-factor ratio and Dean number and the aspect ratio. Some well-known 
correlations available in the literature include : 

Baylis (1971) : 

f,/f, = 1.51Def, A = 1 for 500 < De < 70000, (3.8) 

Cheng & Akiyama (1970) : 

fJfS = 0.225De0*39, A = 1 for 100 < De < 1500, (3.9) 
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FIQURE 10. Stability diagram for different aspect ratios in the 

Reynolds number-curvature ratio plane. 

201 : : : : : : : : : :  : : : : : : : : 4  

0.01 0.02 0.05 0.10 0.20 0.50 0 

1/C, (or rotation number, Ro) 

FIGURE 11 .  Comparison of the stability curve marking the onset of roll-cell instabilities in 
curved ducts with ducts subject to spanwise rotation. 
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FIGURE 12. Variation of friction factor with Dean number for different aspect ratios - a 
comparison of present results with available experimental and computational findings. 
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FIGURE 13. Variation of friction factor with modified Dean number for different aspect ratios - a 
comparison of present results and available experimental and computational findings with the 
correlation proposed in (3.11). 
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FIGURE 14. Physical configuration and coordinate system for flow in ducts subject to 
spanwise rotation. 

Cheng et al. (1976) : 

\ fJfs = C,l)ei( 1 + C, Ded + C, De-l+ C,Ded + C, De-,) 

where 
A co c, c2 c3 c4 

1 0.1278 -0.257 0.669 187.7 -512.2 
2 0.2736 -24.79 325.2 -1591 2728 
5 0.0805 -5.218 104.4 -202.8 0 
0.5 0.0974 4.366 -13.56 131.8 -182.6 

1 (3.10) 

In  the present study the following correlation covering a wide range of parameters 
is proposed based on a single parameter, namely, the modified Dean number defined 
as De/A : 

f,/f, = 1 +0.086 (De/A)0.86. (3.11) 

To illustrate the effectiveness of the proposed correlation, in figure 13 the friction- 
factor ratio is plotted against the modified Dean number along with the results from 
the present computations as well as those of earlier researchers. As can be seen the 
correlation gives a good approximation for the range of parameters 10 < De < 1000 
and 1 < A < 8. It should also be noted that, unlike the earlier correlations, equation 
(3.11) also yields the correct limit offelf,+ 1 for De-t 0. 

4. Conclusions 
A detailed numerical study of the onset and evolution of secondary flows in curved 

rectangular ducts has been conducted using the finite-volume method. The onset of 
secondary motion is found to be a function of the Dean number and curvature ratio 
for ducts of high curvature, while for ducts of low curvature the onset can be 
characterized by the Dean number alone. A comparison with available theoretical 
and experimental results indicates good agreement. The analogy between pressure- 
driven laminar flows in curved ducts and straight ducts subject to spanwise rotation 



Laminar  secondary jlows in curved rectangular ducts 439 

has been demonstrated. A correlation between the friction factor (or reduction in 
volume flux) and the aspect ratio in terms of a modified Dean number (defined as 
Dean number over aspect ratio) has been proposed. This has been found to  be valid 
over a wide range of Dean numbers and aspect ratios. 

Appendix. Analogy between flow in curved ducts and flow in ducts subject 
to spanwise rotation 

The governing equations for fully developed isothermal flow in curved ducts based 
on a cylindrical coordinate system consist of (with the subscripts denoting partial 
derivatives) : 1 

( r u ) ,  + v, = 0, 
r 

1 
r 
-(ru2),+(uw),  = v --Pr+- 

On the other hand, for fully developed viscous flow in ducts subject to spanwise 
rotation based on a Cartesian coordinate system (see figure 14), the governing 
equations can be written as 

u,+vy = 0, 

1 
(UZ),  + (uw), = v[u,, + uyy] - - P, + 2Qw, 

P 
1 

1 

P 
(uw),+ (ww), = v[w,,+w,,]--Pz-22gu. 

The sets of equations (A 1) and (A 2 )  are similar except for the source terms. The 
source term for secondary flow in a curved duct is the centrifugal force term w2/r,  and 
that in a rotating duct is the Coriolis force term 2Qw. Therefore, in this analogy the 
quantity 2Q in ducts subject to spanwise rotation and the term w/r  in curved ducts 
are expected to have a similar effect on the secondary flow. 

The rotation number is a dimensionless parameter appearing in the analysis of flow 
in ducts subject to spanwise rotation and is defined as 

RO = 2QB/ W, (A 3) 

G,' = B/R. (A 4) 

This is analogous to the inverse of the curvature ratio for curved ducts: 

Hence, the comparisons between flow in curved ducts and flow in ducts subject to  
spanwise rotation can be established based on these two dimensionless parameters. 
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